On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow
نویسندگان
چکیده
منابع مشابه
On the isentropic compressible Navier-Stokes equation
In this article, we consider the compressible Navier-Stokes equation with density dependent viscosity coefficients. We focus on the case where those coefficients vanish on vacuum. We prove the stability of weak solutions for periodic domain Ω = T as well as the whole space Ω = R , when N = 2 and N = 3. The pressure is given by p = ρ , and our result holds for any γ > 1. In particular, we prove ...
متن کاملWeak-strong uniqueness for the isentropic compressible Navier-Stokes system
We prove weak-strong uniqueness results for the isentropic compressible Navier-Stokes system on the torus. In other words, we give conditions on a strong solution so that it is unique in a class of weak solutions. Known weak-strong uniqueness results are improved. Classical uniqueness results for this equation follow naturally.
متن کاملHelically Symmetric Solutions to the 3-D Navier-Stokes Equations for Compressible Isentropic Fluids
Abstract: We prove the existence of global weak solutions to the Navier-Stokes equations for compressible isentropic fluids for any γ > 1 when the Cauchy data are helically symmetric, where the constant γ is the specific heat ratio. Moreover, a new integrability estimate of the density in any neighborhood of the symmetry axis (the singularity axis) is obtained.
متن کاملGlobal behavior of 1D compressible isentropic Navier-Stokes equations with a non-autonomous external force
* Correspondence: [email protected] College of Mathematics and Information Science, North China University of Water Sources and Electric Power, Zhengzhou 450011, People’s Republic of PR China Abstract In this paper, we study a free boundary problem for compressible Navier-Stokes equations with density-dependent viscosity and a non-autonomous external force. The viscosity coefficient μ is p...
متن کاملA novel IMEX splitting for the isentropic Navier-Stokes equations
In this talk, we consider the isentropic Navier-Stokes equations at low Mach number M . As M → 0, the equation changes its type [5], making it very difficult for numerical methods to work efficiently. This is in particular true for methods of high order consistency. An approach that turns out to be very successful in this context is to split the convective flux into a stiff and a non-stiff term...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Continuous Dynamical Systems
سال: 2021
ISSN: 1553-5231
DOI: 10.3934/dcds.2021005